Information-theoretic lower bounds on learning the structure of Bayesian networks
نویسندگان
چکیده
In this paper, we study the information-theoretic limits of learning the structure of Bayesian networks (BNs), on discrete as well as continuous random variables, from a finite number of samples. We show that the minimum number of samples required by any procedure to recover the correct structure grows as Ω (m) and Ω (k logm+ k/m) for non-sparse and sparse BNs respectively, where m is the number of variables and k is the maximum number of parents per node. We provide a simple recipe, based on an extension of the Fano’s inequality, to obtain information-theoretic limits of structure recovery for any exponential family BN. We instantiate our result for specific conditional distributions in the exponential family to characterize the fundamental limits of learning various commonly used BNs, such as conditional probability table based networks, Gaussian BNs, noisy-OR networks, and logistic regression networks. En route to obtaining our main results, we obtain tight bounds on the number of sparse and non-sparse essential-DAGs. Finally, as a byproduct, we recover the information-theoretic limits of sparse variable selection for logistic regression.
منابع مشابه
Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization
A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملInformation-theoretic limits of Bayesian network structure learning
In this paper, we study the informationtheoretic limits of learning the structure of Bayesian networks (BNs), on discrete as well as continuous random variables, from a finite number of samples. We show that the minimum number of samples required by any procedure to recover the correct structure grows as Ω (m) and Ω ( k logm+ k 2 /m ) for non-sparse and sparse BNs respectively, where m is the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1601.07460 شماره
صفحات -
تاریخ انتشار 2016